Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nutr Hosp ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38666335

RESUMEN

BACKGROUND AND AIMS: although sarcopenia is associated with several types of cancer, there is limited research regarding its effect on breast cancer. We aimed to explore the causality between sarcopenia-related traits and the incidence and prognosis of breast cancer. METHODS: two-sample bidirectional and multivariate Mendelian randomization (MR) analyses were utilized in this study. Genome-wide association studies were used to genetically identify sarcopenia-related traits, such as appendicular lean mass, grip strength of both hands, and walking pace. Data on the incidence and prognosis of breast cancer were collected from two extensive cohort studies. Multivariate MR analysis was used to adjust for body mass index, waist circumference, and whole-body fat mass. The primary method used for analysis was inverse-variance weighted analysis. RESULTS: a significant association was found between appendicular lean mass and ER- breast cancer (OR = 0.873, 95 % CI: 0.817-0.933, p = 6.570 × 10-5). Increased grip strength of the left hand was associated with a reduced risk of ER- breast cancer (OR = 0.744, 95 % CI: 0.579-0.958, p = 0.022). Stronger grip strength of the right hand was associated with prolonged survival time of ER+ breast cancer patients (OR = 0.463, 95 % CI: 0.242-0.882, p = 0.019). In the multivariable MR analysis, appendicular lean mass, grip strength of both hands, and walking pace were still genetically associated with the development of total breast cancer and ER-/+ breast cancer. CONCLUSIONS: several sarcopenia-related traits were genetically associated with the occurrence and prognosis of breast cancer. It is crucial for elderly women to increase their strength and muscle mass to help prevent breast cancer.

2.
Sci Rep ; 14(1): 8088, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582794

RESUMEN

The Amur tiger is currently confronted with challenges of anthropogenic development, leading to its population becoming fragmented into two geographically isolated groups: smaller and larger ones. Small and isolated populations frequently face a greater extinction risk, yet the small tiger population's genetic status and survival potential have not been assessed. Here, a total of 210 samples of suspected Amur tiger feces were collected from this small population, and the genetic background and population survival potentials were assessed by using 14 microsatellite loci. Our results demonstrated that the mean number of alleles in all loci was 3.7 and expected heterozygosity was 0.6, indicating a comparatively lower level of population genetic diversity compared to previously reported studies on other subspecies. The genetic estimates of effective population size (Ne) and the Ne/N ratio were merely 7.6 and 0.152, respectively, representing lower values in comparison to the Amur tiger population in Sikhote-Alin (the larger group). However, multiple methods have indicated the possibility of genetic divergence within our isolated population under study. Meanwhile, the maximum kinship recorded was 0.441, and the mean inbreeding coefficient stood at 0.0868, both of which are higher than those observed in other endangered species, such as the African lion and the grey wolf. Additionally, we have identified a significant risk of future extinction if the lethal equivalents were to reach 6.26, which is higher than that of other large carnivores. Further, our simulation results indicated that an increase in the number of breeding females would enhance the prospects of this population. In summary, our findings provide a critical theoretical basis for further bailout strategies concerning Amur tigers.


Asunto(s)
Leones , Tigres , Animales , Femenino , Tigres/genética , Especies en Peligro de Extinción , Heterocigoto , Densidad de Población , Repeticiones de Microsatélite/genética , Leones/genética , Conservación de los Recursos Naturales , Variación Genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-38507104

RESUMEN

Cantharidin, a terpenoid produced by blister beetles, has been used in traditional Chinese medicine to treat various ailments and cancers. However, its biological activity, impact, and anticancer mechanisms remain unclear. The Cantharidin chemical gene connections were identified using various databases. The GSE21815 dataset was used to collect the gene expression information. Differential gene analysis and gene ontology analyses were performed. Gene set enrichment analysis was used to assess the activation of disease pathways. Weighted gene co-expression network analysis and differential analysis were used to identify illness-associated genes, examine differential genes, and discover therapeutic targets via protein-protein interactions. MCODE analysis of major subgroup networks was used to identify critical genes influenced by Cantharidin, examine variations in the expression of key clustered genes in colorectal cancer vs. control samples, and describe the subject operators. Single-cell GSE188711 dataset was preprocessed to investigate Cantharidin's therapeutic targets and signaling pathways in colorectal cancer. Single-cell RNA sequencing was utilized to identify 22 cell clusters and marker genes for two different cell types in each cluster. The effects of different Cantharidin concentrations on colorectal cancer cells were studied in vitro. One hundred and ninety-seven Cantharidin-associated target genes and 480 critical genes implicated in the development of the illness were identified. Cantharidin significantly inhibited the proliferation and migration of HCT116 cells and promoted apoptosis at certain concentrations. Patients on current therapy develop inherent and acquired resistance. Our study suggests that Cantharidin may play an anti-CRC role by modulating immune function.

4.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405944

RESUMEN

Pulmonary drug delivery is critical to the treatment of respiratory diseases. However, the human airway surface presents multiscale barriers to efficient drug delivery. Here we report a bottlebrush polyethylene glycol (PEG-BB) nanocarrier that can translocate across all barriers within the human airway surface. Guided by the molecular theory, we design a PEG-BB molecule consisting of a linear backbone densely grafted by many (∼1,000) low molecular weight (∼1000 g/mol) PEG chains; this results in a highly anisotropic, wormlike nanocarrier featuring a contour length of ∼250 nm, a cross-section of ∼20 nm, and a hydrodynamic diameter of ∼40 nm. Using the classic air-liquid-interface culture system to recapitulate essential biological features of the human airway surface, we show that PEG-BB rapidly penetrates through endogenous airway mucus and periciliary brush layer (mesh size of 20-40 nm) to be internalized by cells across the whole epithelium. By quantifying the cellular uptake of polymeric carriers of various molecular architectures and manipulating cell proliferation and endocytosis pathways, we show that the translocation of PEG-BB across the epithelium is driven by bottlebrush architecture enhanced endocytosis. Our results demonstrate that large, wormlike bottlebrush PEG polymers, if properly designed, can be used as a novel carrier for pulmonary and mucosal drug delivery.

5.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L292-L302, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252871

RESUMEN

Since its invention in the late 1980s, the air-liquid-interface (ALI) culture system has been the standard in vitro model for studying human airway biology and pulmonary diseases. However, in a conventional ALI system, cells are cultured on a porous plastic membrane that is much stiffer than human airway tissues. Here, we develop a gel-ALI culture system by simply coating the plastic membrane with a thin layer of hydrogel with tunable stiffness matching that of healthy and fibrotic airway tissues. We determine the optimum gel thickness that does not impair the transport of nutrients and biomolecules essential to cell growth. We show that the gel-ALI system allows human bronchial epithelial cells (HBECs) to proliferate and differentiate into pseudostratified epithelium. Furthermore, we discover that HBECs migrate significantly faster on hydrogel substrates with stiffness matching that of fibrotic lung tissues, highlighting the importance of mechanical cues in human airway remodeling. The developed gel-ALI system provides a facile approach to studying the effects of mechanical cues in human airway biology and in modeling pulmonary diseases.NEW & NOTEWORTHY In a conventional ALI system, cells are cultured on a plastic membrane that is much stiffer than human airway tissues. We develop a gel-ALI system by coating the plastic membrane with a thin layer of hydrogel with tunable stiffness matching that of healthy and fibrotic airway tissues. We discover that human bronchial epithelial cells migrate significantly faster on hydrogel substrates with pathological stiffness, highlighting the importance of mechanical cues in human airway remodeling.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Enfermedades Pulmonares , Humanos , Células Epiteliales , Pulmón , Hidrogeles , Células Cultivadas
6.
Aging (Albany NY) ; 15(24): 14764-14790, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38095643

RESUMEN

OBJECTIVES: This study conducted integrated analysis of bulk RNA sequencing, single-cell RNA sequencing and Weighted Gene Co-expression Network Analysis (WGCNA), to comprehensively decode the most essential genes of intervertebral disc degeneration (IDD); then mainly focused on the JAK3 macromolecule to identify natural compounds to provide more candidate drug options in alleviating IDD. METHODS: In the first part, we performed single-cell transcriptome analysis and WGCNA workflow to delineate the most pivotal genes of IDD. Then series of structural biology approaches and high-throughput virtual screening techniques were performed to discover potential compounds targeting JAK-STAT signaling pathway, such as Libdock, ADMET, precise molecular docking algorithm and in-vivo drug stability assessment. RESULTS: Totally 4 hub genes were determined in the development of IDD, namely VEGFA, MMP3, TNFSF11, and TIMP3, respectively. Then, 3 novel natural materials, ZINC000014952116, ZINC000003938642 and ZINC000072131515, were determined as potential compounds, with less toxicities and moderate ADME characteristics. In-vivo drug stability assessment suggested that these drugs could interact with JAK3, and their ligand-JAK3 complexes maintained the homeostasis in-vivo, which acted as regulatory role to JAK3 protein. Among them, ZINC000072131515, also known as Menaquinone, demonstrated significant protective roles to alleviate the progression of IDD in vitro, which proved the nutritional therapy in alleviating IDD. CONCLUSIONS: This study reported the essential genes in the development of IDD, and also the roles of Menaquinone to ameliorate IDD through inhibiting JAK3 protein. This study also provided more options and resources on JAK3 targeted screening, which may further expand the drug resources in the pharmaceutical market.


Asunto(s)
Degeneración del Disco Intervertebral , Janus Quinasa 3 , Humanos , Biología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Janus Quinasa 3/genética , Simulación del Acoplamiento Molecular , Transcriptoma , Vitamina K 2
7.
J Biomol Struct Dyn ; : 1-24, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902557

RESUMEN

Intervertebral disc degeneration (IDD) is a progressive and chronic disease, the mechanisms have been studied extensively as a whole, while the cellular heterogeneity of cells in nucleus pulposus (NP) tissues remained controversial for a long time. This study conducted integrated analysis through single-cell sequencing analysis, weighted gene co-expression network analysis (WGCNA), and differential expression analysis, to systematically decipher the longitudinal alterations of distinct NP subtypes, and also analyzed the most essential genes in the development of IDD. Then, this study further conducted structural biology method to discover the potential lead compounds through a suite of advanced approaches like high-throughput screening (HTVS), pharmaceutical characteristics assessment, CDOCKER module as well as molecular dynamics simulation, etc., aiming to ameliorate the progression of IDD. Totally 5 NP subpopulations were identified with distinct biological functions based on their unique gene expression patterns. The predominant dynamics changes mainly involved RegNPs and EffNPs, the RegNPs were mainly aggregated in normal NP tissues and drastically decreased in degenerative NP, while EffNPs, as pathogenic subtype, exhibited opposite phenomenon. Importantly, this study further reported the essential roles of Menaquinone in alleviating degenerative NP cells for the first time, which could provide solid evidence for the application of nutritional therapy in the treatment of IDD. This study combined scRNA-seq, bulk-RNA seq and HTVS techniques to systematically decipher the longitudinal changes of NP subtypes during IDD. EffNPs were considered to be 'chief culprit' in IDD progression, while the novel natural drug Menaquinone could reverse this phenomenon.Communicated by Ramaswamy H. Sarma.

8.
Sports Med Open ; 9(1): 89, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747653

RESUMEN

BACKGROUND: The effects of hypoxia conditioning, which involves recurrent exposure to hypoxia combined with exercise training, on improving body composition in the ageing population have not been extensively investigated. OBJECTIVE: This meta-analysis aimed to determine if hypoxia conditioning, compared to similar training near sea level, maximizes body composition benefits in middle-aged and older adults. METHODS: A literature search of PubMed, EMBASE, Web of Science, Scopus and CNKI (China National Knowledge Infrastructure) databases (up to 27th November 2022) was performed, including the reference lists of relevant papers. Three independent reviewers extracted study characteristics and health outcome measures. Search results were limited to original studies of the effects of hypoxia conditioning on body composition in middle-aged and older adults. RESULTS: Twelve studies with a total of 335 participants were included. Hypoxia conditioning induced greater reductions in body mass index (MD = -0.92, 95%CI: -1.28 to -0.55, I2 = 0%, p < 0.00001) and body fat (SMD = -0.38, 95%CI: -0.68 to -0.07, I2 = 49%, p = 0.01) in middle-aged and older adults compared with normoxic conditioning. Hypoxia conditioning improved lean mass with this effect not being larger than equivalent normoxic interventions in either middle-aged or older adults (SMD = 0.07, 95%CI -0.12 to 0.25, I2 = 0%, p = 0.48). Subgroup analysis showed that exercise in moderate hypoxia (FiO2 > 15%) had larger effects than more severe hypoxia (FiO2 ≤ 15%) for improving body mass index in middle-aged and older adults. Hypoxia exposure of at least 60 min per session resulted in larger benefits for both body mass index and body fat. CONCLUSION: Hypoxia conditioning, compared to equivalent training in normoxia, induced greater body fat and body mass index improvements in middle-aged and older adults. Adding hypoxia exposure to exercise interventions is a viable therapeutic solution to effectively manage body composition in ageing population.

9.
Molecules ; 28(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513403

RESUMEN

The use of proteins as biomolecular templates to synthesize atomically precise metal nanoclusters has been gaining traction due to their appealing properties such as photoluminescence, good colloidal- and photostability and biocompatibility. The synergistic effect of using a protein scaffold and metal nanoclusters makes it especially attractive for biomedical applications. Unlike other reviews, we focus on proteins in general as the protective ligand for various metal nanoclusters and highlight their applications in the biomedical field. We first introduce the approaches and underlined principles in synthesizing protein-templated metal nanoclusters and summarize some of the typical proteins that have been used thus far. Afterwards, we highlight the key physicochemical properties and the characterization techniques commonly used for the size, structure and optical properties of protein-templated metal nanoclusters. We feature two case studies to illustrate the importance of combining these characterization techniques to elucidate the formation process of protein-templated metal nanoclusters. Lastly, we highlight the promising applications of protein-templated metal nanoclusters in three areas-biosensing, diagnostics and therapeutics.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Biofarmacia , Proteínas , Nanopartículas del Metal/química
10.
Lipids Health Dis ; 22(1): 86, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386457

RESUMEN

BACKGROUND: The previous study investigated whether the functions of small, medium, and large high density lipoprotein (S/M/L-HDL) are correlated with protein changes in mice. Herein, the proteomic and functional analyses of high density lipoprotein (HDL) subclasses were performed in humans and rats. METHODS: After purifying S/M/L-HDL subclasses from healthy humans (n = 6) and rats (n = 3) using fast protein liquid chromatography (FPLC) with calcium silica hydrate (CSH) resin, the proteomic analysis by mass spectrometry was conducted, as well as the capacities of cholesterol efflux and antioxidation was measured. RESULTS: Of the 120 and 106 HDL proteins identified, 85 and 68 proteins were significantly changed in concentration among the S/M/L-HDL subclasses in humans and rats, respectively. Interestingly, it was found that the relatively abundant proteins in the small HDL (S-HDL) and large HDL (L-HDL) subclasses did not overlap, both in humans and in rats. Next, by searching for the biological functions of the relatively abundant proteins in the HDL subclasses via Gene Ontology, it was displayed that the relatively abundant proteins involved in lipid metabolism and antioxidation were enriched more in the medium HDL (M-HDL) subclass than in the S/L-HDL subclasses in humans, whereas in rats, the relatively abundant proteins associated with lipid metabolism and anti-oxidation were enriched in M/L-HDL and S/M-HDL, respectively. Finally, it was confirmed that M-HDL and L-HDL had the highest cholesterol efflux capacity among the three HDL subclasses in humans and rats, respectively; moreover, M-HDL exhibited higher antioxidative capacity than S-HDL in both humans and rats. CONCLUSIONS: The S-HDL and L-HDL subclasses are likely to have different proteomic components during HDL maturation, and results from the proteomics-based comparison of the HDL subclasses may explain the associated differences in function.


Asunto(s)
Antioxidantes , Proteómica , Humanos , Ratas , Ratones , Animales , Prueba de Estudio Conceptual , Lipoproteínas HDL , Colesterol
11.
Front Immunol ; 14: 1090637, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817437

RESUMEN

Intervertebral disk degeneration (IDD) is a chronic inflammatory disease with intricate connections between immune infiltration and oxidative stress (OS). Complex cell niches exist in degenerative intervertebral disk (IVD) and interact with each other and regulate the disk homeostasis together. However, few studies have used longitudinal approach to describe the immune response of IDD progression. Here, we conducted conjoint analysis of bulk-RNA sequencing and single-cell sequencing, together with a series of techniques like weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, and differential analysis, to systematically decipher the difference in OS-related functions of different cell populations within degenerative IVD tissues, and further depicted the longitudinal alterations of immune cells, especially monocytes/macrophages in the progression of IDD. The OS-related genes CYP1A1, MMP1, CCND1, and NQO1 are highly expressed and might be diagnostic biomarkers for the progression of IDD. Further landscape of IVD microenvironment showed distinct changes in cell proportions and characteristics at late degeneration compared to early degeneration of IDD. Monocytes/macrophages were classified into five distinct subpopulations with different roles. The trajectory lineage analysis revealed transcriptome alterations from effector monocytes/macrophages and regulatory macrophages to other subtypes during the evolution process and identified monocytes/macrophage subpopulations that had rapidly experienced the activation of inflammatory or anti-inflammatory responses. This study further proposed that personalized therapeutic strategies are needed to be formulated based on specific monocyte/macrophage subtypes and degenerative stages of IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Humanos , Monocitos , Transcriptoma , Secuencia de Bases , Macrófagos
12.
Mol Cell Biochem ; 478(7): 1633-1644, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36459268

RESUMEN

CircRNAs are a member of noncoding RNAs and have been verified to play an important regulatory role in cancers. In CRC, the regulatory mechanisms of various circRNAs have not been elucidated. The expression of circPACRGL and miR-330-3p was detected with qRT-PCR. The protein expression of CDK4, MMP-9, Bcl-2, Bax, cellular nucleic acid-binding protein (CNBP) and ß-actin was measured with western blot. Cell proliferation was analyzed using MTT assay, colony formation assay, and EDU assay. Cell apoptosis was detected using flow cytometry. Cell migration and invasion were measured with wound healing and transwell invasion assay. Luciferase reporter assay and RIP assay was used to determine the relationship of among miR-330-3p, circPACRGL and CNBP in CRC cells. In this study, we found that circPACRGL and CNBP expressed high and miR-330-3p expressed low in CRC tissues and cells. Functional experiments showed that inhibition of circPACRGL reduced cell proliferation, migration and invasion in CRC. In addition, knockdown of circPACRGL contributed to cell apoptosis in CRC. Dual-luciferase report assay determined that circPACRGL was a miR-330-3p sponge molecular and CNBP was a target of miR-330-3p. Reversed experiments showed that the effects of sh-circPACRGL transfection on CRC cells were rescued by up-regulating CNBP expression. In this study, we for the first time found a novel regulatory network of circPACRGL in CRC. The results manifested that circPACRGL affected tumor growth by targeting miR-330-3p/CNBP axis in CRC, highlighting the potential of circPACRGL as a therapeutic target for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , ARN Circular/genética , Neoplasias Colorrectales/metabolismo , Movimiento Celular , Proliferación Celular , Apoptosis , Proteínas de Unión al ARN
13.
Hum Cell ; 35(6): 1684-1696, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35925474

RESUMEN

Astragaloside IV (AS-IV), as one of the main active components of Astragalus membranaceus, has been reported to have cardiovascular protective effects. However, the role and molecular mechanism of AS-IV in vascular senescence have not been clearly stated. The in vitro aging model was constructed using bleomycin (BLM) in vascular smooth muscle cells (VSMCs). Cell senescence were assessed through Western blotting analysis of aging markers, flow cytometry, and the ß-galactosidase (SA-ß-Gal) kit. Mitophagy was determined through transmission electron microscopy, TMRM staining, and Western blotting analysis of p62. A model of aging blood vessels was induced by D-gal. The vascular wall thickness of mice was also evaluated by H&E staining. Our data proved that AS-IV plays an anti-senescent role in vitro and in vivo. Results showed that AS-IV effectively improved mitochondrial injury, raised MMP, and mediated mitophagy in BLM-induced senescent VSMCs and D-gal induced aging mice. Parkin expression strengthened AS-IV's anti-senescent function. In conclusions, AS-IV attenuated BLM-induced VSMC senescence via Parkin to regulate mitophagy. Therefore, AS-IV-mediated Parkin might be a latent therapeutic agent and target for VSMC senescence.


Asunto(s)
Mitofagia , Músculo Liso Vascular , Animales , Bleomicina/metabolismo , Bleomicina/farmacología , Senescencia Celular , Ratones , Músculo Liso Vascular/metabolismo , Saponinas , Triterpenos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , beta-Galactosidasa/metabolismo , beta-Galactosidasa/farmacología
14.
Artículo en Inglés | MEDLINE | ID: mdl-36012088

RESUMEN

The aim of this study was to investigate the effects of different exercise modes on improving inflammatory response in the elderly. For the research methodology, databases such as CNKI (China National Knowledge Infrastructure), Wanfang Data, Pubmed, Web of Science, and EBSCO were selected for searching. The Cochrane Risk of Bias (ROB) tool was used to evaluate the methodological quality of the included studies, and RevMan5.4.1 analysis software was applied for the statistical analysis. A total of 31 studies (20 randomized controlled trials and 11 self-controlled trials) with 1528 subjects were included. The results of this meta-analysis showed that aerobic exercise, resistance exercise, aerobic + resistance exercise, and HIIT all significantly reduced the levels of IL-6, TNF-α, and CRP in the elderly, and the improvement effects of aerobic + resistance exercise on IL-6, HIIT on TNF-α, and resistance exercise on CRP in the elderly were better than those of the other three exercise modes, respectively. In conclusion, aerobic exercise, resistance exercise, aerobic + resistance exercise, and HIIT all contribute to ameliorating the inflammatory status of the elderly, among which resistance exercise is a noteworthy exercise mode for the elderly to improve inflammatory status.


Asunto(s)
Interleucina-6 , Factor de Necrosis Tumoral alfa , Anciano , China , Ejercicio Físico/fisiología , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
15.
Exp Cell Res ; 418(1): 113224, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35643178

RESUMEN

PURPOSE: Acute respiratory distress syndrome (ARDS), a severe medical condition, is among the major causes of death in critically ill patients. Morphine is used as a therapeutic agent against severe pain. The mechanisms of its reactions over ARDS are not fully understood. The aim of this study was to assess the mechanism of morphine in rats with ARDS. METHODS: Rats were injected with lipopolysaccharide to induce ARDS, and some rats were pre-treated with graded doses of morphine in the lateral ventricles to assess survival and non-infected mortality. Immunohistochemical and HE staining were performed to measure MPO and CD68 activity in the lungs and lung injury. ELISA was conducted to detect the inflammatory factor levels in the plasma and BALF. Co-labeling of µ-opioid receptor (MOR) and c-Fos was observed in the brain tissues. MOR-positive cells in brain tissues were evaluated using immunohistochemistry. The effect of MOR antagonists on ARDS was examined in rats by pre-injection of naloxone or methylnaltrexone. The expression of MyD88, TLR4, and NF-κB was lastly assessed. RESULTS: Dose-independent improvement was observed in respiratory capacity and lung injury in ARDS rats after morphine pre-injection, along with reduced inflammatory factors in the plasma and BALF. MOR-positive cells were elevated after morphine, which occurred within the ventral part of the gigantocellular reticular nucleus (GiV). Naloxone and methylnaltrexone blocked the effects of morphine via central and peripheral MOR. Morphine activated TLR pathway in a MyD88-dependent manner. CONCLUSION: Morphine activates MOR within the GiV and the TLR pathway to attenuate ARDS in rats.


Asunto(s)
Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Animales , Lipopolisacáridos , Morfina/farmacología , Factor 88 de Diferenciación Mieloide , Naloxona/farmacología , Ratas , Receptores Opioides , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
16.
Eur J Med Res ; 26(1): 146, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34920753

RESUMEN

BACKGROUND: At the end of 2019, the world witnessed the emergence and ravages of a viral infection induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also known as the coronavirus disease 2019 (COVID-19), it has been identified as a public health emergency of international concern (PHEIC) by the World Health Organization (WHO) because of its severity. METHODS: The gene data of 51 samples were extracted from the GSE150316 and GSE147507 data set and then processed by means of the programming language R, through which the differentially expressed genes (DEGs) that meet the standards were screened. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on the selected DEGs to understand the functions and approaches of DEGs. The online tool STRING was employed to construct a protein-protein interaction (PPI) network of DEGs and, in turn, to identify hub genes. RESULTS: A total of 52 intersection genes were obtained through DEG identification. Through the GO analysis, we realized that the biological processes (BPs) that have the deepest impact on the human body after SARS-CoV-2 infection are various immune responses. By using STRING to construct a PPI network, 10 hub genes were identified, including IFIH1, DDX58, ISG15, EGR1, OASL, SAMD9, SAMD9L, XAF1, IFITM1, and TNFSF10. CONCLUSION: The results of this study will hopefully provide guidance for future studies on the pathophysiological mechanism of SARS-CoV-2 infection.


Asunto(s)
COVID-19/genética , Biología Computacional/métodos , Regulación de la Expresión Génica/genética , Pulmón/patología , Mapas de Interacción de Proteínas/genética , COVID-19/patología , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Inmunidad Humoral/genética , Inmunidad Humoral/inmunología , Pulmón/virología , Activación Neutrófila/genética , Activación Neutrófila/inmunología , Neutrófilos/inmunología , SARS-CoV-2 , Transcriptoma/genética
18.
Biomed Res Int ; 2021: 5527505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055977

RESUMEN

BACKGROUND: West Africa has witnessed the unprecedented outbreak of Ebola virus disease (EVD). The Ebola virus (EBOV) can cause Ebola hemorrhagic fever, which is documented as the most deadly viral hemorrhagic fever in the world. RT-PCR had been suggested to be employed in the detection of Ebola virus; however, this method has high requirements for laboratory equipment and takes a long time to determine Ebola infection. Although Xpert Ebola is a fast and simple instrument for the detection of Ebola virus, its effect is still unclear. This study is aimed at evaluating the accuracy of Xpert Ebola in diagnosing Ebola virus infection. METHODS: Using the keywords "Xpert" and "Ebola virus", relevant studies were retrieved from the database of PubMed, Embase, Web of Science, and Cochrane. RT-PCR was employed as a reference standard to evaluate whether the study is eligible to be included in the meta-analysis. Data from these included studies were extracted by two independent assessors and were then analyzed by the Meta-DiSc 1.4 software to produce the heterogeneity of sensitivity (SEN), specificity (SP), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic advantage ratio (DOR) of the study. The results of pooled analysis were plotted, together with the summary receiver operating characteristic (SROC) curve plotted by calculating the area under the curve (AUC). Generated pooled summary estimates (95% CIs) were calculated for the evaluation of the overall accuracy of this study. RESULTS: Five fourfold tables were made from the four studies that were included in the meta-analysis. The pooled sensitivity of Xpert Ebola was 0.98 (95% confidence interval (CI) (0.95, 0.99)), and the pooled specificity was 0.98 (95% CI (0.97, 0.99)). The pooled values of positive likelihood ratio was 53.91 (95% CI (12.82, 226.79)), with negative likelihood ratio being 0.04 (95% CI (0.02, 0.08)) and diagnostic odds ratio being 2649.45 (95% CI (629.61, 11149.02)). The AUC was 0.9961. CONCLUSIONS: Compared with RT-PCR, Xpert Ebola has high sensitivity and specificity. Therefore, it is a valued alternative method for the clinical diagnosis of Ebola virus infection. However, the Xpert Ebola test is a qualitative test that does not provide quantitative testing of EBOV concentration. Whether it can completely replace other methods or not calls for further evidences.


Asunto(s)
Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , África Occidental , Animales , Área Bajo la Curva , Bases de Datos Factuales , Humanos , Oportunidad Relativa , Curva ROC , Estándares de Referencia , Sensibilidad y Especificidad
19.
Ann Transl Med ; 9(8): 672, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33987370

RESUMEN

BACKGROUND: This study investigated whether combinations of high-density lipoprotein (HDL) subfractions and inflammatory markers would add value to coronary artery disease (CAD) prediction. METHODS: Non-CAD subjects (n=245) were stratified into low/moderate/high-Framingham risk (L/M/H-FR) groups and 180 CAD patients were enrolled. Levels of HDL-C, HDL2, HDL3, monocyte chemoattractant protein-1 (MCP-1), and high-sensitivity C-reactive protein (hsCRP) were measured. Multivariable logistic models for CAD were estimated with a single parameter or all parameters together after adjustment for conventional risk factors (CRFs), and Z statistics, net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were used to compare discrimination among different models. RESULTS: The results show that HDL-C, HDL2, and HDL3 gradually decreased, while MCP-1 and hsCRP gradually increased from L/M/H-FR to the CAD group. When applying a single factor in the CRFs-adjusted models, HDL-C (OR 0.011, 95% CI, 0.002-0.071, P<0.05) and HDL2 (OR 0.000072, 95% CI, 0.000001-0.004, P<0.05), but not HDL3, were significantly related to CAD risk. Only HDL2 (OR 0.000072, 95% CI, 0.000001-0.004, P<0.001) remained significant when applying all HDL parameters. In the model including all HDL and inflammatory parameters, HDL2 (OR 0.001, 95% CI, 0.000027-0.051), MCP-1 (OR 1.066, 95% CI, 1.039-1.094), and hsCRP (OR 1.130, 95% CI, 1.041-1.227) showed significant differences (all P<0.05). This combined model showed improved discrimination over the models with a single factor (P<0.05) or all HDL parameters (Z=3.299, NRI =0.179, IDI =0.081, P<0.001). CONCLUSIONS: Large HDL2 is superior to small HDL3 in the inverse association with CAD. The combination of HDL2, MCP-1, and hsCRP with CRFs provides an optimal prediction for CAD.

20.
Biomed Res Int ; 2021: 6614812, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928150

RESUMEN

INTRODUCTION: High mortality associated with carbapenemase-producing Gram-negative bacteria (CP-GNB) has evolved into a global health threat. Rapid and accurate detection as well as prompt treatment are of great significance in this case. Xpert Carba-R, a multiple qualitative analysis designed to detect five clinically relevant carbapenem-resistant gene families within one hour, is regarded as reliable, accurate, and easy-to-operate. This study is to present a systematic evaluation of the performance of Xpert Carba-R in detecting carbapenemase genes in GNB suspected for carbapenemase production. METHODS: We searched and screened the literature on "Xpert Carba-R" in the database of PubMed, Web of Science, Embase, and Cochrane Library, employing two independent evaluators to collect data, respectively. Then, statistical analysis of the data obtained was performed by the Stata 12.0 software to measure the accuracy of Xpert Carba-R assay in detecting the carbapenemase genes in GNB. RESULTS: We screened a total of 1767 Gram-negative bacillus isolates documented in 9 articles. The precision of the detection of OXA-48 carbapenemase genes was 100%; that of NDM = 100%; that of VIM = 100%. When it came to KPC, the precision rate was 100%; that of IMP = 99%. The overall accuracy of the detection of carbapenemase genes was 100%. CONCLUSIONS: Xpert Carba-R assay demonstrates a 100% precision in identifying carbapenemase genes in GNB. It can be seen that Xpert Carba-R method is an effective tool for early clinical detection, which is suitable for the detection of carbapenase gene in GNB.


Asunto(s)
Proteínas Bacterianas/genética , Pruebas de Enzimas/métodos , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/genética , beta-Lactamasas/genética , Bacterias Gramnegativas/aislamiento & purificación , Humanos , Sesgo de Publicación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...